
Node.js Non-Tutorial

“
Node.js® is a platform built on Chrome's JavaScript runtime for easily building
fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O
model that makes it lightweight and efficient, perfect for data-intensive real-time
applications that run across distributed devices [source].

This a lot of mumbo-jumbo for: node.js is a platform for supporting network applications where
one process speaks to another (potentially on a different machine). It is conduit through which
processes can talk to each other.

We will use it in this class as it provides us with a sturctured mechanism for initiating and closing
connections, as well as passing messages. The abstraction layer allows us to focus on the
functionality of the applications rather than the plumbing. Beyond this, it provides us with an
engine that is truly cross-platform (as it uses a standard serialization mechanism called JSON). I
also just think it's kind of cool.

Much of this learning is stuff you will need to do on your own. The purpose of this document is
merely to guide your explorations.

There are three learning objectives as they relate to node.js.

1. Demonstrating competency in designing and developing real, working network
applications.

2. Providing working experience with a new, cutting-edge platform for network applications
that is rapidly becoming a defacto standard in web-based applications and platforms.

3. Messing around with two new programming languages (Javascript, C#), and
understanding basic interop issues.

Note: Not everyone loves node.js. There are a number of really good critiques out there (e.g. that
node code ends up being very long and undecipherable). For our purposes, it provides a nice
platform for thinking about issues that are relevant to us, and is good (I think) for teaching these
basic concepts. My suggestion: withold judgement until you make it through building some
basic apps with node.js, and then try to rebuild them using other platforms (e.g. straight C#).

Installing node.js
1. Navigate to http://nodejs.org/
2. Press the "Install" link

http://nodejs.org/
http://nodejs.org/

This will install a few different binaries on your machine: node and npm are the most important
of the two.

node is the engine that powers everthing. You can run scripts by running node
myscript.js , or enter the REPL straight up by typing in node .
npm is the node package manager. It can be used to install packages or modules from
off the web.

Some Simple Demos
The node.js main page has a couple of quick examples that you can try. For completeness, I'll
reproduce them here.

Create a small webserver

1. Dump the following into a file: example.jsexample.js

Notice: only five lines of code! And, one is basically a printf statement!

var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

2. Open up a web browser, point it at http://127.0.0.1:1337http://127.0.0.1:1337

You'll see your web server say: "Hello World!"

What's happening here?

http.createServer function creates a server. The .listen(1337, '127.0.0.1') bit
basically says, "Make the server listen to the interface 127.0.0.1 at port 1337." Remember that
the interface is local network device (your laptop probably has at least three network devices--
the local loopback device, the ethernet device, and the wifi device); the port is essentially the
"mailbox number" that we care about.

The function inside the createServer bit is the function that is going to be called when the
server gets hit. req refers to the request that is sent by the incoming connection, res refers to
the response that is going to be returned.

Since we are creating a small webserver, node.js provides us with a few convenience functions:
writeHead and end .

http://node.js/

3. Add some debugging messages
Now open up your example.js file again, and add the following lines below the "Hello World"
line:

console.log(req.url);
console.log(req.headers);

If you restart your server now and hit it with the web browser again, you'll see a bunch of text
spew out onto the console. A conventional web browser will actually hit a server with two
requests almost immediately -- one for the root document / , and one for /favicon.ico . This
is why you see two requests on the server, even though you only hit the web server once
yourself. The other thing that's being dumped back out is all the headers.

4. For kicks, connect via telnet
Open up a telnet session to pretend you're a client: telnet 127.0.0.1 1337

Once the session is open, type in: GET / HTTP/1.0 , and press enter twice.

Take note of how the console dump looks different.

Exercises
As exercises, try doing the following:

Implement a simple counter on the server. E.g. each time you hit the server, it reports,
"Hi! x people have hit this server."
Implement a simple mechanism that reports how much time the server has been up
when you hit the server.
Respond differently to requests to / , /increment and /decrement . / responds with
the counter, and the other two URLs increment and decrement the counter respectively.

Additional Reading

HTTP Made Really Easy

TCP Echo Server
You can also create an echo server that replies with anything that you send it. Dump the
following into echoserver.js , and then connect to it using telnet.

http://www.jmarshall.com/easy/http/

var net = require('net');
var server = net.createServer(function (socket) {
 socket.write('Echo server\r\n');
 socket.pipe(socket);
});
server.listen(1337, '127.0.0.1');

Back out to the Real World
nodeschool.io has a lot of tutorials that we will use to familiarize ourselves with both Javascript
and node.js. I've included time estimates (based on my going through the material) at the end of
each line.

In order:

javascripting (~30 mins)
Art of Node: Read through to the end of (at least) Events (~10 mins)
learnyounode (~5 hours)

If you are running this from OS X, you may need to install the packages using sudo , e.g. sudo
npm install -g javascripting .

These tutorials vary in terms of depth and quality, but they will give you a basic primer on the
information usually through a series of short text blurbs (colourfied!) and an exercise. Once you
complete the exercise (as a small text file), you ask the tutorial to verify your exercise. I've found
this to be a little tempermental, but basically it works.

You may get stuck on a few of the learnyounode tutorials (starting around exercise 7). Feel
free to post on the D2L board when you get stuck.

Some additional references:

Art of Node
Using cURL to simulate a POST
Javascript - string.toUpperCase()

Test your Knowledge
You should now be capable of writing some basic Javascript and node.js code. This is already
pretty cool, and you're really starting to get dangerous.

For kicks, you should be able to do the following exercises:

Create a simple HTTP server that actually serves up a set of html and image files
(perhaps pointed to sample directory)

http://nodeschool.io/#workshoppers
https://github.com/maxogden/art-of-node
https://github.com/maxogden/art-of-node
http://superuser.com/questions/149329/what-is-the-curl-command-line-syntax-to-do-a-post-request
http://www.w3schools.com/jsref/jsref_touppercase.asp

Create a simple web crawler. Given a URL, it grabs the initial page, scrapes all the href
mentions, and grabs all the files and image files that are referenced. (Once you have
done this, you should be able to write a recursive version.)

